predicting stock market is one of the challenging tasks in the field of computation. Physical vs. physiological elements, rational vs. illogical conduct, investor emotions, market rumors, and other factors all play a role in the prediction. All of these factors combine to make stock values very fluctuating and difficult to forecast accurately. ...
 This paper presents a comparison of conventional and modern machine (deep) learning within the framework of anomaly detection in self-organizing networks. While deep learning has gained significant traction, especially in application scenarios where large volumes of data can be collected and processed, conventional methods may yet offer strong stat...
 The detection and prevention of a network intrusion is a major concern. Machine Learning and Deep Learning methods detect network intrusions by predicting the risk with the help of training the data. Various machine learning and deep learning methods have been proposed over the years which are shown to be more accurate when compared to other networ...
 The detection and prevention of a network intrusion is a major concern. Machine Learning and Deep Learning methods detect network intrusions by predicting the risk with the help of training the data. Various machine learning and deep learning methods have been proposed over the years which are shown to be more accurate when compared to other networ...
 This paper presents the design of a fully integrated electrocardiogram (ECG) signal processor (ESP) for the prediction of ventricular arrhythmia using a unique set of ECG features and a naive Bayes classifier. Real-time and adaptive techniques for the detection and the delineation of the P-QRS-T waves were investigated to extract the fiducial point...
 Unsupervised domain adaptation (UDA) aims at learning a classifier for an unlabeled target domain by transferring knowledge from a labeled source domain with a related but different distribution. Most existing approaches learn domain-invariant features by adapting the entire information of the images. However, forcing adaptation of domain-specific ...
 Deep learning (DL) based diagnosis models have to be trained by large quantities of monitoring data of machines. However, in real-case scenarios, machines operate under the normal condition in most of their life time while faults seldom happen. Therefore, though massive data are accessible, most are data of the normal condition while fault data are...
 As a class of context-aware systems, context-aware service recommendation aims to bind high-quality services to users while taking into account their context requirements, including invocation time, location, social profiles, connectivity, and so on. However, current CASR approaches are not scalable with the huge amount of service data (QoS and con...
 Social media is a popular medium for the dissemination of real-time news all over the world. Easy and quick information proliferation is one of the reasons for its popularity. An extensive number of users with different age groups, gender, and societal beliefs are engaged in social media websites. Despite these favorable aspects, a significant disa...
  In this paper, we report our discovery on named entity distribution in a general word embedding space, which helps an open definition on multilingual named entity definition rather than previous closed and constraint definition on named entities through a named entity dictionary, which is usually derived from human labor and replies on schedule...
 This work aims to enhance our fundamental understanding of how the measurement setup used to generate training and testing datasets affects the accuracy of the machine learning algorithms that attempt solving electromagnetic inversion problems solely from data. A systematic study is carried out on a one-dimensional semi-inverse electromagnetic prob...
 With the fast development of various positioning techniques such as Global Position System (GPS), mobile devices and remote sensing, spatio -temporal data has become increasingly available nowadays.Mining valuable knowledge from spatio - temporal data is critically important to many real-world applications including human mobility understanding, sm...
 The ubiquitous adoption of Internet-of-Things (IoT) based applications has resulted in the emergence of the Fog computing paradigm, which allows seamlessly harnessing both mobile-edge and cloud resources. Efficient scheduling of application tasks in such environments is challenging due to constrained resource capabilities, mobility factors in IoT, ...

We have more than 145000 Documents , PPT and Research Papers

Have a question ?

Mail us : info@nibode.com