Background matting is a recently developed image matting approach, with applications to image and video editing. It refers to estimating both the alpha matte and foreground from a pair of images with and without foreground objects. Recent work has applied deep learning to background matting, with very promising performance achieved. However, existi...
 We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm of the matrix of pairwise chordal distances between three subspaces associated with features, graph, ...
 We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm of the matrix of pairwise chordal distances between three subspaces associated with features, graph, ...
 Background matting is a recently developed image matting approach, with applications to image and video editing. It refers to estimating both the alpha matte and foreground from a pair of images with and without foreground objects. Recent work has applied deep learning to background matting, with very promising performance achieved. However, existi...

We have more than 145000 Documents , PPT and Research Papers

Have a question ?

Chat on WhatsApp