Development of AI-ML based models for predicting prices of agri-horticultural commodities such as pulses and vegetable (onion, potato, onion)

PROJECT READY CHECK VIDEO

The Department of Consumer Affairs monitors the daily prices of 22 essential food commodities through 550 price reporting centres across the country. The Department also maintains buffer stock of pulses, viz., gram, tur, urad, moon and masur, and onion for strategic market interventions to stabilize the volatility in prices. Decisions for market ...

students attendence by using fingerprint reader

The project work aims at designing a student attendance system which could effectively manage attendance of students of the department of Computer Science and Engineering at Jatiya Kabi Kazi Nazrul Islam University. In this project work, attendance is marked after student’s biometric identification. For student identification, a fingerprint recog...

image processing by using python

As artificial intelligence (AI) develops quickly, Python has become the de facto fully object-oriented programming language. Python'ssimplicity, language variety, and vast library ecosystem make it a valuable tool for image processing . This research study examines Python's role in image processing in detail, outlining its benefits, drawbacks, a...

heart disease prediction final year project cse

Day by day the cases of heart diseases are increasing at a rapid rate and it’s very Important and concerning to predict any such diseases beforehand. This diagnosis is a difficult task i.e. it should be performed precisely and efficiently. The research paper mainly focuses on which patient is more likely to have a heart disease based on various m...

Facial Recognition Attendance System Using Python and OpenCv

The main purpose of this project is to build a face recognition-based attendance monitoring system for educational institution to enhance and upgrade the current attendance system into more efficient and effective as compared to before. The current old system has a lot of ambiguity that caused inaccurate and inefficient of attendance taking. Ma...

Online Payment Fraud Detection using Machine Learning in Python

As we are approaching modernity, the trend of paying online is increasing tremendously. It is very beneficial for the buyer to pay online as it saves time, and solves the problem of free money. Also, we do not need to carry cash with us. But we all know that Good thing are accompanied by bad things.  The online payment method leads to frau...

An Interpretable and Accurate Deep-Learning Diagnosis Framework Modeled With Fully and Semi-Supervised Reciprocal Learning

The deployment of automated deep-learning classifiers in clinical practice has the potential to streamline the diagnosis process and improve the diagnosis accuracy, but the acceptance of those classifiers relies on both their accuracy and interpretability. In general, accurate deep-learning classifiers provide little model interpretability, whi...

Stock price movement prediction based on the historical data using machine learning

predicting stock market is one of the challenging tasks in the field of computation. Physical vs. physiological elements, rational vs. illogical conduct, investor emotions, market rumors, and other factors all play a role in the prediction. All of these factors combine to make stock values very fluctuating and difficult to forecast accurately. ...

A Human-Machine Agent Based on Active Reinforcement Learning for Target Classification in Wargame

To meet the requirements of high accuracy and low cost of target classification in modern warfare, and lay the foundation for target threat assessment, the article proposes a human-machine agent for target classification based on active reinforcement learning (TCARL_H-M), inferring when to introduce human experience guidance for model and how to au...

UNDERSTANDING DEPTH OF REFLECTIVE WRITING IN WORKPLACE LEARNINGASSESSMENTS USING MACHINE LEARNING CLASSIFICATION

The collapse of Dam I, owned by Vale S.A, in Brumadinho-MG (Brazil), among other serious socioenvironmental consequences, contaminated the waters of the Paraopeba River in a stretch of hundreds of kilometers. Considering the relevance of monitoring water quality, and knowing that field evaluation is a time-consuming and costly procedure, the use of...

UNDERSTANDING DEPTH OF REFLECTIVE WRITING IN WORKPLACE LEARNINGASSESSMENTS USING MACHINE LEARNING CLASSIFICATION

The collapse of Dam I, owned by Vale S.A, in Brumadinho-MG (Brazil), among other serious socioenvironmental consequences, contaminated the waters of the Paraopeba River in a stretch of hundreds of kilometers. Considering the relevance of monitoring water quality, and knowing that field evaluation is a time-consuming and costly procedure, the use of...

3-D DECONVOLUTIONAL NETWORKS FOR THE UNSUPERVISED REPRESENTATION LEARNING OF HUMAN MOTIONS

The major obstacle for learning-based RF sensing is to obtain a high-quality large-scale annotated dataset. However, unlike visual datasets that can be easily annotated by human workers, RF signal is non-intuitive and non-interpretable, which causes the annotation of RF signals time-consuming and laborious. To resolve the rapacious appetite of anno...

MACHINE LEARNING FOR INTER-TURN SHORT-CIRCUIT FAULT DIAGNOSIS IN PERMANENT MAGNET SYNCHRONOUS MOTORS

Permanent Magnet Synchronous Motor (PMSM) is widely used due to its advantages of high power density, high efficiency and so on. In order to ensure the reliability of a PMSM system, it is extremely vital to accurately diagnose the incipient faults. In this paper, a variety of optimization algorithms are utilized to realize the diagnosis of the faul...

I LET DEPRESSION AND ANXIETY DROWN ME…” IDENTIFYING FACTORS ASSOCIATEDWITH RESILIENCE BASED ON JOURNALING USING MACHINE LEARNING AND THEMATIC

Over the years, there has been a global increase in the use of technology to deliver interventions for health and wellness, such as improving people’s mental health and resilience. An example of such technology is the Q-Life app which aims to improve people’s resilience to stress and adverse life events through various coping mechanisms, including ...

FUSING SELL-SIDE ANALYST BIDIRECTIONAL FORECASTS USING MACHINE LEARNING

Sell-side analysts’ recommendations are primarily targeted at institutional investors mandated to invest across many companies within client-mandated equity benchmarks, such as the FTSE/JSE All-Share index. Given the numerous sell-side recommendations for a single stock, making unbiased investment decisions is not often straightforward for portfoli...

FAIRNESS IN SEMI-SUPERVISED LEARNING: UNLABELED DATA HELP TO REDUCE DISCRIMINATION

Machine learning is widely deployed in society, unleashing its power in a wide rangeof applications owing to the advent of big data.One emerging problem faced by machine learning is the discrimination from data, and such discrimination is reflected in the eventual decisions made by the algorithms. Recent study has proved that increasing the size of...

ENRICHING THE TRANSFER LEARNING WITH PRE-TRAINED LEXICON EMBEDDINGFOR LOW-RESOURCE NEURAL MACHINE TRANSLATION

Most State-Of-The-Art (SOTA) Neural Machine Translation (NMT) systems today achieve outstanding results based only on large parallel corpora. The large-scale parallel corpora for high-resource languages is easily obtainable. However, the translation quality of NMT for morphologically rich languages is still unsatisfactory, mainly because of the dat...

AUTOMATED SCREENING SYSTEM FOR ACUTE MYELOGENOUS LEUKEMIA DETECTION

Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is prevalent among adults.The average age of a person with AML is 65 years. The need for automation of leukemia detection arises since current methods involve manual examination of the blood smear as the first step toward diagnosis. This is time-consuming, and its accuracy depen...

AN ONLINE TRANSFER LEARNING FRAMEWORK WITH EXTREME LEARNING MACHINFOR AUTOMATED CREDIT SCORINGE

Automated Credit Scoring (ACS) is the process of predicting user credit based on historical data. It involves analyzing and predicting the association between the data and particular credit values based on similar data. Recently, ACS has been handled as a machine learning problem, and numerous models were developed to address it. In this paper, we ...

THE HIDDEN SEXUAL MINORITIES: MACHINE LEARNING APPROACHES TO ESTIMATE THE SEXUAL MINORITY ORIENTATION AMONG BEIJING COLLEGE STUDENTS

The availability of digital technology in the hands of every citizenry worldwide makes an availableunprecedented massive amount of data. The capability to process these gigantic amounts of data in real-time with Big Data Analytics (BDA) tools and Machine Learning (ML) algorithms carries many paybacks. However, the highnumber of free BDA tools, plat...

ON THE SYNERGIES BETWEEN MACHINE LEARNING AND BINOCULAR STEREO FO DEPTH ESTIMATION FROM IMAGES A SURVEY

Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research. Throughout the years the paradigm has shifted from local, pixel-level decision to various forms of discrete and continuous optimization to data-driven, learning-based methods.Recently, the rise of machine learning and the rapid...

MACHINE LEARNING AND MARKETING A SYSTEMATIC LITERATURE REVIEW

Even though machine learning (ML) applications are not novel, they have gained popularity partly due to the advance in computing processing.This study explores the adoption of ML methods in marketing applications through a bibliographic review of the period 2008–2022. In this period, the adoption of ML in marketing has grown significantly. This gro...

ICS: TOTAL FREEDOM IN MANUAL TEXT CLASSIFICATION SUPPORTED BY UNOBTRUSIVE MACHINE LEARNING

We present the Interactive Classification System (ICS), a web-based application that supports the activity of manual text classification.The application uses machine learning to continuously fit automatic classification models that are in turn used to actively support its users with classification suggestions. The key requirement we have establishe...

MACHINE LEARNING FOR STRUCTURE DETERMINATION IN SINGLE-PARTICLE CRYO ELECTRON MICROSCOPY: A SYSTEMATIC REVIEW

Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques.Despite their wide utilization in protein structure determination, these two techniques have logical limitations, wi...

Data Privacy and key based security using SH256

Information security means protecting data, such as a database, from destructive forces and from the unwanted actions of unauthorized users. Information Security can be achieved by using cryptographic techniques. It is now very much demanding to develop a system to ensure better long lasting security services for message transaction over the Intern...

Covid-19 outbreak Prediction with the Base of Deep Learning Vgg16

In recent months, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. In addition to the clinical tests like reverse transcription- polymerase chain reaction (RT-PCR), medical imaging techniques such as computed tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID...

EMOJI TEXT BASED CHATBOT MUSIC RECOMMENDATION SYSTEM USING MACHINE LEARNING

Emojis are used in Computer Mediated Communication (CMC) as a way to express paralinguistics otherwise missing from text, such as facial expressions or gestures. However, finding an emoji on the ever expanding emoji list is a linear search problem and most users end up using a small subset of emojis that are near the top of the emoji list. Current ...

A MULTIPLE GRADIENT DESCENT DESIGN FOR MULTI-TASK LEARNING ON EDGE COMPUTING MULTI-OBJECTIVE MACHINE LEARNING APPROACH

In multi-task learning, multiple tasks are solved jointly, sharing inductive bias between them. Multi-task learning is inherently a multi-objective problem because different tasks may conflict, necessitating a trade-off. A common compromise is to optimize a proxy objective that minimizes a weighted linear combination of pertask losses. However, thi...

INTEGRATING MACHINE LEARNING ALGORITHMS WITH QUANTUM ANNEALING SOLVERS FOR ONLINE FRAUD DETECTION

Machine learning has been increasingly applied in identification of fraudulent transactions. However, most application systems detect duplicitous activities after they have already occurred, not at or near real time. Since spurious transactions are far fewer than the normal ones, the highly imbalanced data makes fraud detection very challenging and...

LEARNING WITH SELECTED FEATURES

Feature selection is the task of choosing a small subset of features that is sufficient to predict the target labels well. Here, instead of trying to directly determine which features are better, we attempt to learn the properties of good features. For this purpose we assume that each feature is represented by a set of properties, referred to as me...

MACHINE LEARNING TO IDENTIFY PSYCHOMOTOR BEHAVIORS OF DELIRIUM FOR PATIENTS IN LONG-TERM CARE FACILITY

This study aimed to develop accurate and explainable machine learning models for three psychomotor behaviors of delirium for hospitalized adult patients.A prospective pilot study was conducted with 33 participants admitted to a long-term care facility between August 10 and 25, 2020. During the pilot study, we collected 560 cases that included 33 cl...

PREDICTING BRAIN AGE USING MACHINE LEARNING ALGORITHMS A COMPREHENSIVE EVALUATION

The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression machine learning mod...

QUANTUM-INSPIRED MACHINE LEARNING FOR 6G FUNDAMENTALS, SECURITY, RESOURCE ALLOCATIONS, CHALLENGES, AND FUTURE RESEARCH DIRECTIONS

Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search.Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality, and data structures. Hence, the conventional machin...

PREDICTION OF DIABETES EMPOWERED WITH FUSED MACHINE LEARNING

In the medical field, it is essential to predict diseases early to prevent them. Diabetes is one of the most dangerous diseases all over the world. In modern lifestyles, sugar and fat are typically present in our dietary habits, which have increased the risk of diabetes To predict the disease, it is extremely important to understand its symptoms. C...

MACHINE LEARNING BASED HEALTHCARE SYSTEM FOR INVESTIGATING THE.ASSOCIATION BETWEEN DEPRESSION AND QUALITY OF LIFE

Machine learning (ML) algorithms are nowadays widely adopted in different contexts to perform autonomous decisions and predictions. Due to the high volume of data shared in the recent years, ML algorithms are more accurate and reliable since training and testing phases are more precise. An important concept to analyze when defining ML algorithms co...

CREDIT CARD FRAUD DETECTION USING STATE-OF-THE-ART MACHINE LEARNING AND DEEP LEARNING ALGORITHMS

The usage of credit cards for online and regular purchases is exponentially increasing and so is the fraud related with it. A large number of fraud transactions are made every day. Various modern techniques like artificial neural network Different machine learning algorithms are compared, including Logistic Regression, Decision Trees, Random Forest...

COGNITIVE WORKLOAD RECOGNITION USING EEG SIGNALS AND MACHINE LEARNING A REVIEW

Machine learning and its subfield deep learning techniques provide opportunities for the development of operator mental state monitoring, especially for cognitive workload recognition using electroencephalogram (EEG) signals. Although a variety of machine learning methods have been proposed for recognizing cognitive workload via EEG recently, there...

ANOMALY DETECTION IN SELF-ORGANIZING NETWORKS CONVENTIONAL VERSUS.CONTEMPORARY MACHINE LEARNING

This paper presents a comparison of conventional and modern machine (deep) learning within the framework of anomaly detection in self-organizing networks. While deep learning has gained significant traction, especially in application scenarios where large volumes of data can be collected and processed, conventional methods may yet offer strong stat...

A REVIEW ON MACHINE LEARNING STYLES IN COMPUTER VISION—TECHNIQUES AND FUTURE DIRECTIONS

Due to the advancement in the field of Artificial Intelligence (AI), the ability to tackle entire problems of machine intelligence. Nowadays, Machine learning (ML) is becoming a hot topic due to the direct training of machines with less interaction with a human.The scenario of manual feeding of the machine is changed in the modern era, it will lear...

A NOVEL TWO-MODE INTEGRAL APPROACH FOR THERMAL ERROR MODELING IN CNC MILLING-TURNING MACHINING CENTER

Thermal errors have the largest contribution, as much as about 70%, to the machining inaccuracy of computer-numerical-controlled (CNC) machining centers. The error compensation method so far plays the most popular and effective way to minimize the thermal error. How to accurately and quickly build an applicable thermal error model (TEM) is the kern...

A MINI-REVIEW OF MACHINE LEARNING IN BIG DATA ANALYTICS APPLICATIONS, CHALLENGES, AND PROSPECTS

The availability of digital technology in the hands of every citizenry worldwide makes an availableunprecedented massive amount of data. The capability to process these gigantic amounts of data in real-time with Big Data Analytics (BDA) tools and Machine Learning (ML) algorithms carries many paybacks. However, the highnumber of free BDA tools, plat...

MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR CYBERSECURITY A

The detection and prevention of a network intrusion is a major concern. Machine Learning and Deep Learning methods detect network intrusions by predicting the risk with the help of training the data. Various machine learning and deep learning methods have been proposed over the years which are shown to be more accurate when compared to other networ...

MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR CYBERSECURITY

The detection and prevention of a network intrusion is a major concern. Machine Learning and Deep Learning methods detect network intrusions by predicting the risk with the help of training the data. Various machine learning and deep learning methods have been proposed over the years which are shown to be more accurate when compared to other networ...

A SYSTEMATIC REVIEW ON RECENT ADVANCEMENTS IN DEEP AND MACHINE LEARNING BASED DETECTION AND CLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA

Automatic Leukemia or blood cancer detection is a challenging job and is very much required in healthcare centers. It has a significant role in early diagnosis and treatment planning. Leukemia is a hematological disorder that starts from the bone marrow and affects white blood cells (WBCs). Microscopic analysis of WBCs is a preferred approach for a...

A SYSTEMATIC REVIEW ON RECENT ADVANCEMENTS IN DEEP AND MACHINE LEARNING BASED DETECTION AND CLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA

Automatic Leukemia or blood cancer detection is a challenging job and is very much required in healthcare centers. It has a significant role in early diagnosis and treatment planning. Leukemia is a hematological disorder that starts from the bone marrow and affects white blood cells (WBCs). Microscopic analysis of WBCs is a preferred approach for a...