Approximate Pruned and Truncated Haar Discrete Wavelet Transform VLSI Hardware for Energy-Efficient ECG Signal Processing

The approximate computing paradigm emerged as a key alternative for trading off accuracy and energy efficiency. Error-tolerant applications, such as multimedia and signal processing, can process the information with lower-than-standard accuracy at the circuit level while still fulfilling a good and acceptable service quality at the application leve...

Self-Supervised Learning for Electroencephalography

Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and lab...

COGNITIVE WORKLOAD RECOGNITION USING EEG SIGNALS AND MACHINE LEARNING A REVIEW

Machine learning and its subfield deep learning techniques provide opportunities for the development of operator mental state monitoring, especially for cognitive workload recognition using electroencephalogram (EEG) signals. Although a variety of machine learning methods have been proposed for recognizing cognitive workload via EEG recently, there...